\qquad Date: \qquad Period: \qquad

What is Latitude?

Latitude is defined as a measurement of distance in degrees north and south of the equator. There are 90 degrees of latitude from the equator to each of the north ($90^{\circ} \mathrm{N}$ latitude) and south ($90^{\circ} \mathrm{S}$ latitude) poles. Latitude lines are pictured on the globe to the right. Latitude lines are parallel, that is they are the same distance apart. In fact, they are sometimes called parallels. At 7,926 miles ($12,756 \mathrm{~km}$) in length, the equator is the longest of all lines of latitude. It divides the earth in half and is measured as 0° (zero degrees). Positions on latitude lines above the equator are called "north" and are in the northern hemisphere. Miami, Florida, for example, is nearly twenty-five degrees north of the equator. Its approximate latitude is written as $25^{\circ} \mathrm{N}$. Positions on latitude lines below the equator are called "south". Brisbane Australia, for example, is near the thirty
 degree latitude line too, but in the southern hemisphere. Its latitude is written as $30^{\circ} \mathrm{S}$.

Complete the Following

a. Lines of latitude are \qquad to the equator.
b. There are \qquad degrees of latitude north and south of the equator.
c. The equator is \qquad degrees.
d. Another name for latitude lines is \qquad .
e. The equator divides the earth into \qquad equal parts.
f. Write a definition of latitude.
\qquad Date: \qquad Period: \qquad
g. Practice finding the latitudes of a number of places. Place A has been given its latitude to help you get started.

A. $80^{\circ} \mathrm{N}$	D.	G.	J.
B.	E.	H.	K.
C.	F.	I.	L.

h. You can easily determine how many degrees separate one place from another place. For example, B is on the $60^{\circ} \mathrm{N}$ line of latitude; C is on the $40^{\circ} \mathrm{N}$ line of latitude. By subtracting we find that B is 20° further north than C .

* How many degrees of latitude separate:

C from D	E from F	G from K	C from I	L from A	B from G

\qquad Date: \qquad
\qquad

What is Longitude?

Longitude is defined as measurement of distance in degrees east or west of the prime meridian. The prime meridian divides the earth in half and is referred to as 0° longitude. The prime meridian, as do all other lines of longitude, pass through the north and south pole. This is shown in the diagram to the right. Longitude lines are not parallel. They make the earth look like a peeled orange. There are 180 lines of longitude on the each side of the prime meridian. On the opposite side, the prime meridian is not zero degrees but 180 degrees. Here, it is called the International Date line. Longitude lines to the left of the prime meridian give locations west, in the western hemisphere. Longitude lines to the right of the prime meridian give locations east, in the eastern hemisphere. Miami, Florida, for example, is near the 80° line of longitude. It is west of the prime meridian and is written $80^{\circ} \mathrm{W}$.

Complete the Following

h. Longitude lines connect the \qquad with the \qquad .
i. The line of 0° longitude is called the \qquad .
j. Longitude lines give directions \qquad and \qquad of the prime
k. There are \qquad degrees of longitude each side of the prime meridian.
I. Longitude lines are not \qquad like latitude lines.
m.Write a definition of longitude.
\qquad Date: \qquad Period: \qquad
n. The lines of longitude on the diagram below are 15° apart. Notice that some of the lines are not numbered, that there are blank boxes on those lines. Study the numbers on the other lines, then print the proper numbers in the boxes.

o. What are the longitudes of the following points shown on the map? Remember: You must write E for east, or W for west to properly identify the location.

A. $60^{\circ} \mathrm{W}$	C.	E.	G.
B.	D.	F.	H.

i. Every place on the earth is in two hemispheres (except for places on the prime meridian, 180° line of longitude, the equator or at the North and South Poles.

* In what two hemispheres is:

D		H		G		C	
Nort	West						

\qquad

Write the approximate coordinates of the following symbols:

s	*	
8	4	
\checkmark	()	
-	*	
\bigcirc	8	

\qquad
\qquad

How to Determine your Latitude?

If you stand at the North Pole and look directly up above your head, you will see a star called Polaris, or the North Star (img. A). This star is visible from any location in the Northern Hemisphere, though it will be visible at different heights in the sky depending on where you are. If you measure the angle between the horizon and Polaris, that angle will be equal to your latitude. Before you can do this, you must be able to locate Polaris amongst the many stars visible in the night sky. In order to do this, you must locate the constellation Ursa Major, also known as the Big
 Dipper. This constellation "points" directly to Polaris (img. B). Once you find Polaris, you need to use an instrument called an astrolabe (img. C) to measure the angle between the horizon and Polaris. This angle is equal to your latitude.

Look at the image on the left. This man is using an astrolabe to measure the angle between the horizon and Polaris, which, in this example, is equal to 43°. Notice, the angle between Polaris and the observer's zenith (the point directly above the observers head) is also shown. This number is irrelevant and meaningless. The latitude of this observer is $43^{\circ} \mathrm{N}$. It must be north because this technique does not work in the Southern Hemisphere as Polaris is not visible south of the equator.
\qquad Date: \qquad Period: \qquad

Latitude/Polaris Practice

1. What is the altitude of Polaris here in Mamaroneck (approx. $42^{\circ} \mathrm{N}$)?
2. What happens to the altitude of Polaris as you move north in the northern hemisphere?
3. What happens to the altitude of Polaris as you move south in the northern hemisphere?
4. What happens to the altitude of Polaris as you move due west from Mamaroneck to Chicago?
5. If the altitude of Polaris in Mamaroneck is 42° tonight, what will it's altitude be tomorrow night?
6. How does Polaris appear to change position during the night?
7. How do stars near Polaris appear to change position during the night?
8. What is the altitude of Polaris at the North Pole?
9. What is the altitude of Polaris at the equator? \qquad
10.If you cannot see Polaris on a clear night, state something concerning your position on the Earth's surface?
11.If you are facing Polaris, which compass direction is at your back? \qquad
12.If you are facing Polaris, which compass direction is to your left?
13.Where on Earth's surface is gravity the strongest?
14.Where on Earth's surface is your weight the maximum?
15.As you move north in the northern hemisphere, what happens to your weight? \qquad
\qquad Period:
16.As you move north in the northern hemisphere, what happens to the pull of gravity?
17.Where is the altitude of Polaris the maximum?

\qquad
\qquad

How to Determine your Longitude?

The Earth is not sitting still, it is both rotating on it's axis and revolving around the Sun. It takes one day (23 hours, 56 minutes and 4 seconds) to complete a rotation and one year (365.26 days) to complete one revolution. One rotation is equal to one complete spin, or 360°. If it takes us about 24 hours to spin 360°, we know that we are spinning at a rate of $15^{\circ} /$ hour. Because of this, locations on Earth that are 15° of longitude apart, also have a time difference of one hour. This is the basis of our system of time zones (img. A). As a result, we can use time to help us to determine our longitude.

Step 1: Determine when it is solar noon at your location by waiting until the Sun reaches it's highest point in the sky.

Step 2: Identify how many hours difference there is between solar noon at your location and the time at the Prime Meridian. To do this, you need a chronometer, a type of very accurate clock (see left).

Step 3: Multiply the number of hours between the time where you are and the time at the Primer Meridian by 15°.

Step 4: If the time where you are is less than the time at the Prime Meridian, you are west of the Prime Meridian. If the time where you are is later than the time at the Prime Meridian, you are east of the Prime Meridian.

"If time is less, you are west, if time did increase, you are east"

Example...

You are sailing on a ship and have lost your way. You have determined your latitude to be $35^{\circ} \mathrm{N}$ by observing Polaris last night. Now you need to calculate your longitude. You observe the Sun to be directly overhead. At that instant, your chronometer reads 4:00 pm (the time at the Prime Meridian). What is your longitude?

There is a 4 hr. difference between your time and Prime Meridian time.
Four hours $\times 15^{\circ}=60^{\circ}$. Since your time is less, you are west. Your longitude is $60^{\circ} \mathrm{W}$.
\qquad Date: \qquad Period: \qquad

Longitude/Time Zones Practice

1. Your time is $2: 00 \mathrm{pm}$, Prime Meridian time is $10: 00 \mathrm{am}$. What is your longitude?
\qquad
2. Your time is 9:00 am, Prime Meridian time is 3:00 pm. What is your longitude?
\qquad
3. Your time is 5:00 pm, Prime Meridian time is $4: 00 \mathrm{pm}$. What is your longitude?
\qquad
4. Your time is 9:00 pm, Prime Meridian time is 2:00 pm. What is your longitude?
\qquad
5. It is $2: 00 \mathrm{pm}$ at the Prime Meridian and you are located at $30^{\circ} \mathrm{W}$ longitude. What time is it where you are? \qquad
6. It is $2: 00 \mathrm{pm}$ at the Prime Meridian and you are located at $45^{\circ} \mathrm{E}$ longitude. What time is it where you are? \qquad
7. It is $10: 00$ am at the Prime Meridian and you are located at $60^{\circ} \mathrm{W}$ longitude. What time is it where you are? \qquad
8. It is $10: 00 \mathrm{am}$ at the Prime Meridian and you are located at $90^{\circ} \mathrm{E}$ longitude. What time is it where you are? \qquad
